Stochastic L-BFGS Revisited: Improved Convergence Rates and Practical Acceleration Strategies

نویسندگان

  • Renbo Zhao
  • William B. Haskell
  • Vincent Y. F. Tan
چکیده

We revisit the stochastic limited-memory BFGS (L-BFGS) algorithm. By proposing a new framework for analyzing convergence, we theoretically improve the (linear) convergence rates and computational complexities of the stochastic LBFGS algorithms in previous works. In addition, we propose several practical acceleration strategies to speed up the empirical performance of such algorithms. We also provide theoretical analyses for most of the strategies. Experiments on large-scale logistic and ridge regression problems demonstrate that our proposed strategies yield significant improvements via-à-vis competing state-of-the-art algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linearly-Convergent Stochastic L-BFGS Algorithm

We propose a new stochastic L-BFGS algorithm and prove a linear convergence rate for strongly convex and smooth functions. Our algorithm draws heavily from a recent stochastic variant of L-BFGS proposed in Byrd et al. (2014) as well as a recent approach to variance reduction for stochastic gradient descent from Johnson and Zhang (2013). We demonstrate experimentally that our algorithm performs ...

متن کامل

Global convergence of online limited memory BFGS

Global convergence of an online (stochastic) limited memory version of the Broyden-FletcherGoldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic objectives that arise in large scale machine learning is established. Lower and upper bounds on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the curvature approximation ma...

متن کامل

A Stochastic Quasi-Newton Method for Online Convex Optimization

We develop stochastic variants of the wellknown BFGS quasi-Newton optimization method, in both full and memory-limited (LBFGS) forms, for online optimization of convex functions. The resulting algorithm performs comparably to a well-tuned natural gradient descent but is scalable to very high-dimensional problems. On standard benchmarks in natural language processing, it asymptotically outperfor...

متن کامل

A Progressive Batching L-BFGS Method for Machine Learning

The standard L-BFGS method relies on gradient approximations that are not dominated by noise, so that search directions are descent directions, the line search is reliable, and quasi-Newton updating yields useful quadratic models of the objective function. All of this appears to call for a full batch approach, but since small batch sizes give rise to faster algorithms with better generalization...

متن کامل

Training L1-Regularized Models with Orthant-Wise Passive Descent Algorithms

The `1-regularized sparse model has been popular in machine learning society. The orthant-wise quasi-Newton (OWL-QN) method is a representative fast algorithm for training the model. However, the proof of the convergence has been pointed out to be incorrect by multiple sources, and up until now, its convergence has not been proved at all. In this paper, we propose a stochastic OWL-QN method for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.00116  شماره 

صفحات  -

تاریخ انتشار 2017